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,of the wavenumber determine the phase velocity and the attenuation of
the layered medium, respectively. Dispersion and the attenuation curves
can be obtained by using different periods. The above wavenumbers can be
used in the inhomogeneous differential equation; this equation contains
the effect of the vertical boundary; solution of this equation determines
the displacement at the vertical boundary. The displacements at the left
and right sides of the boundary may be use& in the energy equation to
determine the reflected and the transmitted energy, respectively. The
difference between the incident and transmitted energy determines the
difference between the wavenumbers at the left and right hand sides of
the vertical boundary. Addition of these differences to the
waverumbers of the left hand boundary would result in the formation of
the dispersion curve at the right hand boundary.
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ABS TRACT

A normally incident Rayleigh wave may be used for the

investigation of a general vertical boundary and the attenua-

tion of a viscoelastic medium. Use of energy conservation and

proper boundary conditions produce 2 N second order differen-

tial equations, N being the number of viscoelastic layers in

the medium. The homogeneous part of the differential equations

can be transformed into an eigenvalue problem by the use of

finite element technique; the eigenvalue and eigenvectors of

the eigenvalue problem are the wavenumbers and the displacement

amplitudes of the viscoelastic layered medium. The real and

imaginary parts of the wavenumber determine the phase velocity

and the attenuation of the layered medium, respectively. Dis-

persion and the attenuation curves can be obtained by using

different periods. The above wavenumbers can be used in the

inhomogeneous differential equation; this equation contains

the effect of the vertical boundary; solution of this equation

determines the displacement at the vertical boundary. The

displacements at the left and right sides of the boundary may

be used in the energy equation to determine the reflected and

the transmitted energy, respectively. The difference between
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the in-ident and transmitted energy determines the difference

between the wavenumbers at the left and right hand sides of

the vertical boundary. Addition of these differences to the

wavenumbers of the left hand boundary would result in the

formation of the dispersion curve at the right hand boundary.
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PREFACE

The attenuation of a surface wave along its path is of interest in

many branches of physical science; among the noted are solid mechanics,

acoustics, and seismology. The aim of this dissertation is to present

a method of Rayleigh wave propagation in a viscoelastic solid con-

strained by one or two vertical boundaries. The material is arranged

to present a summary of viscoelastic behavior of solid, an introduction

to the method of finite element for the derivation and solution of

governing equations, a discussion on energy conservation in elastic and

viscoelastic solids, and presentation of a perturbation theory for the

calculation of the phase velocity due to a vertical boundary, followed

by a chapter on application of data to the method.

I hope that this dissertation will be a stimulant for interested

investigators, to be critical of the material herein, and to be encour-

aged enough to further test the validity of the theory by using other

distinct models. As a reference, the text is supolemented by a rela-

tively vast number of references, which provide a great deal of

information for understanding the subject.

I would like to thank Professor E. Herrin for his advice through

the course of my research and for his critical opinion of this dis-

sertation. I would also like to thank Doctors B. Mohraz, D. Blackwell,

T. Goforth, H. Mack, and W. Peeples, for their criticisms and

encouragements.
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CHAPTER I

INTRODUCTION

Rayleigh wave amplitude decays as it propagates through the earth.

The amount of the decay observed is invariably more than what the theory

predicts. This anomaly is due to the loss mechanisms or the energy

dissipation in the medium; thus the observed Rayleigh wave amplitude

is a function of energy dissipation or attenuation.

Attenuation of Rayleigh wave is due to anelasticity and geo-

metrical discontinuities of the earth. Anelasticity of the earth may

be thought of as the imperfection in crystal structure: such as point

defects, dislocation across which the atoms are not aligned in accor-

dance with the normal lattice structure, and interatomic bonds at grain

boundaries. Geometrical discontinuities, among others (23, 24), cause

the distortion of the plane of propagation of Rayleigh waves from the

great circle and therefore there is a loss of energy or attenuation.

In a dissipating medium the deformation of a solid is a function

of time, temperature and space. Creep phenomenon is a deformation process

in which there is a time dependent strain under a constant applied stress

and relaxation phenomenon is a time dependent stress under a constant

strain. A solid manifesting creep and relaxation phenomena is called

viscoelastic. If a deformation is due to discontinuities in the medium

or the amplitude decay is only a function of position, the dissipation
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of the wave energy is of the hysteretic type (Figure 1), and the amount

of this loss must be determined by the average energy dissipation in a

hysteresis loop over one cycle of harmonic motion and is a function of

displacement amplitude.

To narrow the gap between the observed and predicted Rayleigh

wave amplitude the effect of viscoelasticity and geometrical discon-

tinuities must be taken into account. A few workers have studies the

viscoelastic behavior of Rayleigh waves for an isotropic homogeneous

layered half-space. Press and Healy (94) derived an expression for the

absorption coefficient and a dispersion relation assuming complex

velocities for shear, longitudinal and Rayleigh waves respectively.

King and Sheard (56) used a dissipation function for a general aniso-

trop",c medium and derived a dispersion relation for an isotropic layered

half-space equivalent to that of Press and Healy (94). Borcherdt (15)

also formulated a similar theoretical expression for a layered half-

space. Auld (8) determined the attenuation of Rayleigh waves due to

viscous damping in the medium by using King and Shread's dissipation

function (56). He concluded that the Rayleigh wave attenuation is

mostly due to shear viscosity of the medium. For observational studies

of the dissipation of Rayleigh waves the reader is referred to Anderson,

et al (5) and Tryggvason (115).

The effect of geometrical discontinuities on the propagation of

Rayleigh waves have been a problem of seismologists for many years.

Several studies have been devoted to the description of the field around

wedges and corners using approximate analytical techniques: e.g., Lapwood

(66), Mal and Knopoff (82), McGarr (85) and Alsop et al (2). Several

theoretical studies have also been done in more recent years

_______ C
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with, in most part, the assumption of weak horizontal inhomogeneity on

assumption of a small change in elastic parameters. Among

the more important are, Babish et al. (9), Kennett (55) and Mukitina

et al. (88).

The observed distorted Rayleigh wave through the continental

margins or the oceanic ridges has been studied by Capon (19, 20) and

by Evernden (31, 32, 33) and the amount of distortion has been approx-

imated analytically by Gjevik (39) who has used ray tracing theory and

perturbation theory. The distortion of Rayleigh waves from the great

circle has also been studied by Crampin (23, 24) who has stated that

the distortion is due to a layer of anisotropic olivine in the upper

mantle.

The finite element method has been used, in recent years, in

wave propagation problems of seismology. Lysmer (78) and Lysmer and

Waas (79) developed a lumped mass method to study the propagation of

Rayleigh and shear waves in a homogeneous layered medium. Lysmer and

Drake (80) introduced the method of consistent mass matrix of the finite

element method to seismology. Drake (28, 29) studied the propagation

of Love and Rayleigh waves in a nonhorizontally layered medium. Drake

(26) also studied the motion of Rayleigh waves at a continental

boundary. Waas (117) improved the method of finite element to a

general two dimensional problem and Kausel et al. (54) extended the

method to a three dimensional problem in which Rayleigh wave corres-

ponds to a vertical cross section and Love wave corresponds to a

horizontal cross section of the medium. Smith (107) applied the method
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of finite element to body wave propagation. Finally Segol et al.

(105) studied the propagation of a Rayleigh wave being obstructed by

trenches.

In this dissertation the finite element method is used to study

the attenuation of Rayleigh waves due to viscoelasticity i.e., vis-

cosity, temperature, partial melting, etc., and determine a dissipative

factor due to a vertical boundary. The model consists of a heterogeneous

medium bounded by two vertical boundaries (Figure 4). These two bound-

aries are the common boundaries between the heterogeneous medium and

two semiinfinite horizontal layered media extending to left and right.

For the two viscoelastic layered media a second order differential

euuation similar to that of a damping oscillator is obtained in which

the damping factor is a matrix whose entries are the viscoelastic para-

meters of the medium. The solution of this equation determines the wave-

numbers and the amount of attenuation of Rayleigh waves in the horizontal

direction. Use of the boundary conditions at the vertical boundaries

results in the equation of motion of the heterogeneous medium whose

solution yields the horizontal and vertical displacement of the

heterogeneous medium. These displacements and the wavenumbers of the

layered regions are used in the energy conservation theorem along with

a perturbation theory to determine the amount of absorption due to

viscoelasticity of the region and the change in the wavenumbers due to

vertical boundaries. The adjusted wavenumbers of the right hand

boundary may be used to determine the dispersion curve and the amount

of attenuation at the right hand boundary.



CHAPTER II

VISCOELASTICITY

A. Summary

The phenomenon of viscoelasticity is a broad subject in the study

of materials in the gaseous, liquid, and solid states. Interested

readers are referred to the selected texts on the subject by Bland (13),

Christensen (22), Gross (44), Kolsky (60, 61), Litvitz and Davis (72),

Mathson (84) and Zener (122) for theoretical studies, and Anderson (3,

4), Anderson et al. (5, 6), Gordon (41, 42, 43), Hart et al. (45),

Jackson and Anderson (50), Liu et al. (74), Magnitsky and Zharkov (81)

and Orowan (90) for seismological interest. A brief review for the

problem at hand will be presented here.

B. Uniaxial Deformation

Viscoelastic materials combine elastic and viscous effects;

therefore, it is possible to model the material of the viscoelastic

earth by networks made of simple elastic and viscous elements. The

simpliest model is a spring and a dashpot in series or parallel and

is called a Maxwell or Voigt element, respectively. Mathematically

the stress-strain relation for the model is

+ (2.1)nV

for the Maxwell element, and

5
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UC + ni 0 a (2.2)Vi

for the Voigt element, where a is the stress, c is the strain, the rate of

the strain, u is the elastic modulus of the spring and n is the coefficient

of viscosity of the dashpot (Figure 2). A combination of a spring with

elastic modulus "1 either in series with a Voigt element or in parallel

with a Maxwell element will produce a relation

Ma r(C + TC ) (2.3)

called the standard linear solid, where

Snv nv Ulu

S- M - (2.4)

are the stress relaxation time under constant strain, the strain

relaxation under constant stress, and the deformation or relaxed elastic

modul us, respectively.

The solution of Equation 2.1 for a constant strain results in a

decaying exponential function of the form

U(t) = a0 EXP (- u/nvt) (2.5)

which is called the relaxation function. Similarly the solution of Equation

2.2 for a constant stress results in an increasing exponential function

of the form

V(t) - (- 0 - e ) (2.6)
I

which is called a creep function (Figure 3). The solution of Equation 2.3
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yields the relaxation and creep functions of the form

t
a(t) MrC(t) + Mr TEXP (- t/t) f EXP (T/T )i(T)dr

and (2.7)

t t
C(t) a t) (- t/r€) f EXP(/T );(T)dT

r r T C

Equations 2.7 represent the Boltzmann after-effect. The verbal statement

of these equations by Boltzmann is that for all real solids the relation

between stress or strain components at any time depends not only on their

instantaneous values at that time, but on the whole history of defor-

mation from the time at which the material was formed. It is now

possible to represent the viscoelastic behavior of the real material

by either a large number of Maxwell elements and springs joined in

parallel or a large number of Voigt elements and springs joined in series.

The arrangement of the springs represent the molecular position of

material and the dashpots represent the perturbation factor for the

distortion of molecular positions. Thus the generalized relaxation and

creep function for uniaxial deformation is given by

Nt t
U(t) - Mrc(t) + M Z EXP (- t/t ) f EXP(TIi ) (T)dTr r =I - i

and (2.B)

N Ta* t
C(t) = + - EXP C- t/Ti) f EXP (T/Ici);(T)dTto re nr i l p oCisi p i

Equations 2.8 represent the Boltzmnn superposition principle.
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C. Three Dimensional Deformation

For a general linear viscoelastic model consider the energy density

(67),

* - 1/2 CijKL cij cKL (2.9)

where c's are strains and CiJKL, generally complex, are the moduli of the

medium. For an anisotropic medium CiKL contain 21 independent complex,jKL
coefficients. For an isotropic medium these coefficients reduce to two

elastic constants in an elastic medium, whereas, in the viscoelastic

medium the two coefficients are not constant and may be a function of

time, temperature, position or other thermodynamic parameters. There-

fore, in an isotropic viscoelastic medium Equation 2.9 can be written as

1/2 A 6ij i + Ijj2 + 1/2 x'(t, T, x,)6 1j C 1
2

+ '(t, T, i, y)cij 2  (2.10)

where X and u are Lame' constants, ' and v' the coefficients which

depend on the viscoelastic behavior of the medium. Since Equation 2.10

is a scalar function, the stress field can be obtained by a directional

derivative with respect to the strain tensor as

V 6i j oil + 2 ucij + x'(t, T, i, y)aij cii + 2 v'(tTiy)cij

(2.11)

The first two terms in Equation 2.11 represent the familiar form of the

stress-strain relation in an isotropic homogeneous medium and the last

two terms are due to the viscoelasticity of the medium.

ii. -
. . . . - .. . . . . ,to , ra m u .. . . . . . . .. . . .. .. .. . . . . . . . ' .. .. . . .. .. . . . . .. . .
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0. Effective Moduli for a Relaxing Medium

For functionals A' and u', the effective moduli of the stressed

medium can be obtained by either substitution of Equation 2.11 into

Equation 2.7 and integrating it through the limits of integration, or

by formation of a relation similar to Equation 2.3, using Equation 2.11;

the latter is a more convenient way to choose. For this purpose we may

write Equation 2.11 in terms of shear and dilatational components.

Using the strain tensor

= (cij - 1/3 aijcii) + 1/3 aijcii (2.12)

Equation 2.11 becomes

o 2ij 21(j - 1/3 6ijcii) + Krli6ij + 2v'( ij 1/3 61jiii )

+ K'i16ij (2.13)

where K a x + 2/3P is called dilational or bulk modulus. Separating

the stress tensor of Equation 2.13 into the compressional and sheer

component, the result, in the form of Equation 2.3, can be written as

+ii + Cv l " K cii - "v K ii

(2.14)

aii + s aij UCij + Ts U. Cij

where rv and -s are relaxation times, K - K Ts/ v and u. z u .vTs
• The

assumption of a harmonic stress in Equations 2.14 will produce a

relation of the form

____
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oii(w) - - Ke(w) cii(w)

aij(£) Ue(W) Cij(w) (2.16)

where

Ke~a) ( K[l - (1 - t ()W12T2/0 + W2T V )

-iW (- Ts/V) TWO +

pe( 2)iC1[I - - ) 21( + 22
e T

- iw (1 - TVTs )Ts(+ 2S2 (2.17)

Equation 2.17 is identical to Equation 2.16 of Liu et al. (74)

which was derived independently. It is clear now that the effective

modull of a viscoelastic wave and therefore the velocity of the wave is

a function of frequency which has been claimed by many investigators

for body waves and recently by a few for surface waves. Futterman (38)

and Lomlntz (77) theorized the concept of frequency dependence of the

phase velocity of body waves. Kogan (59), Lamb (65), Liu et al. (74),

Magnitsky and Zharkov (81), Mason (83) and Strick (109) have studied the

frequency dependent velocity of body waves and concluded the validity of

Futterman's theory. Most recently a few studies have been devoted to

frequency dependent phase velocity of surface wave and the free oscil-

lation of the earth by Liu and Archambeau (73, 75), Park and Rockwell

(92), Randall (95) and Kanamori and Anderson (53).

I
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E. Two Dimensional Deformation

The six independent components of the stress tensor in a three

dimensional, isotropic medium reduce to three independent components

in two dimensions. Therefore, an x - z plane propagation would result

in a zero stress in y direction such that

Oxy a Oyy Z azy W 0 (2.18)

Starting with the first two terms of Equation 2.11 (for derivation of

the equations of motion, the inelastic part of the stress tensor need

not be included for the moment),

.ij Z x ij + 2v £ = 1,3 (2.19)
S;iji j j - 1,3

and the constraint relation, Equation 2.18, the nonzero three indepen-

dent component of the stress in two dimensional systems are

(ll x oxx x + 2P cxx + Azz

013 = Oxz = 2v cxz

zz xx + 2u c Czz (2.20)

where the components of the strain tensor are obtained from the relation

BUI  aU.

C 1/2 (aU1  :a) i1 1,3 (2.21)
axj i j l.3

as
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aUx  aUx  aUx

= axx = 1/2(- au

aUx  aUz

13 Cz = 112(- -- , .- ) (2.22)

aUz' aU aUz

= =E =1/2(a- - + auZ) Z
33 zz az az

where

Ux and Uz are horizontal and vertical displacements of the propagating

plane wave respectively. Substituting Equations 2.22 into Equations 2.20

and expressing the stress components in a vector form, the result is

a = (axx, azz, Gxz) =D c (2.23)

where

X)+2v X 0] aux  auz  auz  aux
D = [ A+2U 0 , ax 'az ' x ) (2.24)

0 0

Equation 2.23 is derived for an elastic medium; for an inelastic medium

the Lame' constants in Equation 2.23 must be replaced by the effective

moduli of Equation 2.17.

F. Wave Equation in Cartesian Coordinates

Using the stress tensor of Equation 2.19 the wave equation is

obtained by

olj~ 2.( i) Fi  (2.25)
3xj . ii 1
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If the force Fi is assumed to be the inertia force then

a

a (a.) = pU(2.26)axj I(

where p is the density and double dot denotes the acceleration.

Assumption of a hormonic plane wave allows a displacement of the form

Ui  Ui(x,z)eiwt (2.27)

where

U. = (Ux UZ)

Substitution of Equutions 2.20, 2.22 and 2.27 into Equation 2.26 leads to

a two dimensional equation of motion

22  . 2 Ua2 +a2

ax ( +V X2 aa + ax 2 az2

(2.28)
a 2 a2 a 2 a 2U
a2z= + Uz a Uzx 2z+Z + ) z---2 + V x-- 2 az---

Since the displacement Ui is a function of x and z, an independent

product of the function of x and z may be replaced by U.(x,z)

Ux(X,Z) = Ux(z)w(x)
(2.29)

Uz (X,Z) = Uz(z)w(x)

Substitution of Equations 2.29 into Equations 2.28 yields the coupled

ordinary second order differential equations

- -- __ n n .= * . n . . ...
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d2Ux  dU 2
= d - iK( + )Z-" K (X + 2p)Ux + PWUx = 0

dz d

(2.30)
d2U dUx  2 2

(A + 2u) -- iK (X + u) L - K PUz + pW2U = 0
d7z dz z z

and

dA+ K2W = 0 (2.31)

dx

Equation 2.31 has a solution of the form

W(x) = e-iA x  (2.32)

and Equation 2.27 may be expressed by

= U (z)ei(wt - Kx)Ux

(2.33)

= U i( - Kx)

the amplitudes Ux(z) and Uz (z) are obtained by the solution of the

differential Equations 2.30.

So far there has not been any restriction on the condition of

Equation 2.30 and the amplitudes Ux (z) and Uz (z) Equation 2.30 may be

solved for a general plane wave. Our interest is in a solution with

proper constraints to produce a Rayleigh wave, a plane wave that propa-

gates in one direction and dissipates in the direction normal to the

direction of propagation. In general, these two directions need not be

perpendicular; when the medium of propagation is viscoelastic the

i
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direction of propagation and dissipation of Rayleigh wave are not

perpendicular. In this case the wave is called a generalized Rayleigh

wave and is discussed in more detail in Chapter IV.

To acquire a Rayleigh wave solution, in an N layered medium, from

Equation 2.33, we analyze Equation 2.30. For an N layered medium Equation

2.30 constitutes 2N second order differential equations. The boundary

conditions required for the solution of these equations are continuity

of the stresses and displacements at each interfaces, zero stress at

free surface, and zero displacement amplitude at a distance far

from the surface. The stresses considered are the stress normal to the

plane interface and the shear stress on the plane interface; they are

given by

aUx  auz

0 z - + (A + 2p) z

(2.34)

au aU

There must be continuity at the interfaces where the Lame' constants just

above and below the interfaces may be different. Thus, the conditions for

the stresses are

aUx auaU aUz
au x + l + 2u) !- 09 pl x + Tz = 0 (2.35)
I x + 2 i) a . al 2 i 0x

on the surface and

au x  au =, aUx + aul
ax (j-I + 2Uj-3) -1= ax - +  j-1 + 2 uj. )

au ax ADl a' z
az ax j Z- ax (2.36)
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j = 2,... N, at the interfaces. Also the conditions for continuity

of displacements are

U zU and U S UN j 2,... N (2.37)

and for Z N+l far enough below the surface

U -0 and U 0. (2.38)UXN+ 1  UZN+l

With these boundary conditions the solution of Equation 2.30 will lead to

an eigenvalue problem whose solutions are extremely difficult. For this

reason we leave further discussion of Equation 2.30 for the next chapter

in which we discuss the finite element method.

. . . . ._ .-



CHAPTER III

THEORETTCAL BACKGROUND OF THE FINITE ELEMENT METHOD

A. Summary

For a detailed review of the method of finite element the reader

is referred to the texts by Bathe and Wilson (11), Desai and Abel (25),

Norrie and de Vrles (89), Richards (97), Segerlind (103) and Zlenkiewicz

(124) for mathematical and engineering application, and by Lysmer (78),

Lysmer and Waas (79), Lysmer and Drake (80), Segol et al. (105) and

Waas (117) for seismological applications. A summary of the derivation

of the essential equations will be discussed in this chapter.

The finite element technique has been brought to seismology in

recent years. It seems to be more successful than the method of finite

difference. The basic difference between the two techniques is that

in the finite difference method the continuous medium is used to derive

a set of differential equations which are replaced by finite difference

equations. In the finite element technique the continuous medium is

first approximated and the governing differential equations are solved

numerically. Therefore, in the finite element technique the basic

assumption is to divide the continuous layered medium into a discrete

system consisting of, for example, rectangular elements each having

four nodal points. The displacement of the structure is equivalent to

17
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the displacement of the nodal points and all the forces between the

elements and the external forces are transmitted through the nodal

points.

The forces that produce displacements within an element are

represented by

K6 (3.1)

where K is called the stiffness matrix depending on the orientation and

properties of the elements. If the inertia force is present Equation 3.1

Is written as

= (K - .2 M) U (3.2)

where M is the mass matrix of the element and w is the frequency of the

vibration. Since the number of elements have to be finite the structure

must be bounded. For this reason the structure with irregular geometry,

I, is joined, along the vertical planes, to the regions, L and R, which

extend infinitely to the left and to the right, respectively (Figure 4).

Regions L and R consist of horizontal layers which are welded together

at their interfaces and may differ in their material properties and

thickness. For this configuration the finite element method is used

to analyze the motion in the irregular zone I and a discrete theory,

which is essentially a one dimensional finite element, is used to

analyze the motion of the layered zones. The natural layers of the L

and R zones must be subdivided into a larger number of layers so that

the nodal points of the elements in the irregular zone at the vertical

boundaries coincide with the layer interfaces. The thickness of the

I.
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element is determined by the wave length of the S wave in the layered

zones (104).

B. Setup of the Method

The irregular region of zone I consists of an assemblage of

quadrilateral elements interconnected at their nodal points. A typical

element e is defined by its nodes i, J, K and L. The displacements at

the element nodes are taken as unknown and the solution within each

element is approximated by a shape function N that varies linearly along

the boundaries, i.e.,

U = NV = [Ni, N., NK, NL (Vi V., VK9 VL) (3.3)

in which, for a plane wave propagation,

Vi a (Vl' V2)i etc. (3.4)

are the horizontal and vertical displacements at the element's node I,

etc., and the martix NT is the shape function in terms of (C , n), the

local coordinates of the element. The component Ni, etc. of the matrix

NT is unity at the node i, etc. and is equal to zero at other nodes.

The above displacement is related to the strain by

; - BU (3.5)

where

a 0
ax

B= 0 .U(U ,u) . (3.6)

3" xx zz

La aJ
ax az

\:

!l .....
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If the strain energy, or the energy density , defined

in Chapter lIB, exists, then as in Chapter IIB, its derivative with

respect to the strain tensor is the stress field and is given by

2 a~ aj (3.7)

The elastic part of the stress in Equation 3.7 in terms of the strain

is given by

Oij = XCii 61j + 2 C (3.8)

Equation 3.7 can be written equivalently as

6* M 6 cj (3.9)

which is the virtual work done by the force Fi per unit of volume and

the surface force Ti per unit of area (37). For static equilibrium the

expression

f Ujj 6 Cidv = JF i 6Ui dv + fT 6 Uids (3.10)

is called the principle of virtual work produced by the virtual dis-

placement 6Ui. Equation 3.10 will be used to derive the equation of

motion of an element in the irregular region I. If the body force Fi is

the inertia force per unit of volume,a set of inhomogeneous differential

equations can be derived by rewriting Equation 3.10 as

6 - F1 SU)dv - fT1 aU ds (3.11)

This equation, with Ti equal to zero can also be used to derive a homo-

geneous second order differential equation for the layered medium, L and
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R of Figure 4, as

(aij a ij " Fi Ui)dv = 0 . (3.12)

The first term of this equation can be written as

f aij 6 cijdv = fvij(6ui + 6Uji)dv

-- 5 6.. . 6Uidv + f a.i v 6Uids, (3.13)

using the familiar expression

Ci = 1/2 + (3.14)

ndtheGauss's theorem. Substitution of Equation 3.13 into Equation 2.12

gi yes

(aij,j + Fi) 6UldV - f oij v 6Uids = 0 (3.15)
V 5

which for an arbitrary 6UI satisfies the equation of motion

all + F. = 0 (3.16)

and either

6Ui a 0 (3.17)

on the rigid boundary or

all v -0, (3.18)

the surface boundary condition.

k ..... I
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Equation 3.15 determines the motion of the wave in the horizontal

layers L and R. The first integrand of this equation is the general

equation of motion and the second integrand is the horizontal boundary

condition, i.e., in a plane wave case, the normal stress in the z

direction and the shear stress on the plane interfaces. For convenience

we write Equation 3.15 in a vector form as

f aT. * dv - f 6 T . ov ds = 0 (3.19)

v s

where W is the equation of motion, and T represents complex conjugate

transpose.

C. Rayleigh Wave Motion

The displacement of the medium in the horizontal and vertical

directions produced by the propagation of a Rayleigh wave can be

represented by (1)

Ux = U x(x,z ) e
t mtt

(3.20)

U z  Uz(x,z) eiWt

Substitution of this equation into the equations of motion, with no force

present, and the separation of variables in the usual way would result in

Ux (x,z) - Ux (z) e-Kx

(3.21)

Uz(x,z) - Uz(z) e
1iKx

Substitution of Equation 3.21 into Equation 3.20 will produce the vector

displacement of Equation 3.19 as

JI
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(Ux(z), Uz(z))ei(t - Kx)(3.22)

The six component stress tensor in three dimensions will reduce to a

three component stress vector in two dimensions and is given by

au (Gx, a z XZ) (3.23)

where, from Equation 3.8

3U 3Uza (I+ 2p) lux + Aa

aU aUz
o =A x + (I + 2P) T (3.24)zz ax3

°xz= " -T --

Therefore,

D c (3.25)

where

D A X+2P 0 (3.25a)

0 0

£ a z z + 3x) (3.26)

At the interfaces the stress component in the x direction is zero and

the surface stress av in Equation 3.19, and the matrix D in this case are

-- - - - - - - - - - - - - - - -- fe.- ...
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ov= (ZZ, Oz) , (3.27)

x +2u 0]

D' = [ (3.28)0 0

then

ov = D'C (3.29)

respectively. Substituting Equations 3.22, 3.24-3.26 and 3.27- 3.29 into

Equation 3.19 and assuming that Fi is the inertia force per unit of

volume we have

f(6; T . D -, 2 66T . U)dxdz - f 66T" 0' ; dx (3.30)
v s

where the elemental volume dv and surface ds in three dimension

reduce to dxdz and dx in two dimensions, respectively. Using Gauss's

theorem on the last term of Equation 3.30 we get

-TTf J T. D' C dx D ZT (66. D' e )dxdz (3.31)
s v

T

where DZ = and T represents transpose. Since 1 operates

on a product vectors 6U and £ the right hand side of Equation 3.31

expands to

f" D (6tJT- D'c )dxdz = f DZT 6 T (D'; )dxdz
v V

+ f 6U ' DZT dxdz (3.32)
V

_______
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If we rewrite Equation 3.6

(aUx  BUz  auz  aux=\.(z au ' - = 0 - (Ux , Uz) (3.33)

az- 'Z 0. az 3z x zLa a
Lz ax

a

ax 0T

([a -L (Ux' U (3.34)
z x x

and substitute Equations 3.32 - 3.34 into Equation 3.30 we have

f(6uT. H . DZT 5T.i, H ) dxdz = 0 (3.35)

where

K2 (A + 2u) - p2 iKx az
az

= (3.36)

iKv - K2U - OW2
@z

and

H= (3.37)

-- iK ]

Equations 3.35 involves partial derivatives with respect to z of the

displacement U in Equation 3.22 which is an implicit function of z. The

differential equations obtained in this way will possess the unknowns

I .. ..f



26

in the argument of the exponential functions and thus their solution

are nearly impossible. For this reason we use the technique of the

finite element to derive equations that may be solved conveniently.

For the layered region we use a one dimensional element, i.e.,

an element with two nodal points for the two horizontal plane interfaces

sharing the jth layer as shown in Figure 5. Let the displacement

vector U be approximated by,

U=NV (3.38)

so that

bT jT NT (3.39)

The partial derivative of this with respect to z is

a 6T =T a NT (3.40)

where, from Equation 3.3, for a linear expansion

N = [Ni, N.) = 1/2 (3.41)

0 1-n 0 1+n

If the origin is at the midpoint of the layer then

z (3.42)

h/2

z - -h/2, n =-1 at the top of the layer and z - h/2, n =1 at the bottom of

the layer (124) as shown in Figure 5.

A
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Substitution of Equations 3.38-3.40 into Equation 3.35 results in

f6ZT( 2 Ta N + iKNTac N - 2NTN + -

x z a z- a
Layers

+ iK NTcTN) V dxdz 0 (3.43)

where

a [ 0 [ 1, and i = (3.44)

0 V V Lo 0 + 2Ui

Evaluation of the integral for each layer gives

fha NT qa N

0 -J T

fhT a N dz = A
o (3.45)

h NT c N dz = C.

0

hT
f NT N dz = M.j
0

And from Equation 3.42

aL_ I a (3.46)

az h/2 an

so that

N~ 112= (3.47) lz11 0 + 1 -- 10.Ti

0 1-n 0 1+4 0 -1 0 1



28

Substitution of Equations 3.41, 3.42 and 3.46 into the first of

Equations 3.45 leads to

"-1 0-

h i T - N dz =h/2 f 1 dn

s -I - 1 0 0 X+2 1 0 - I

0 1

or

V 0 -U 0

0 x+2u 0 -(x+2u)

G. (3.48)J= h. -0 0 0

0 -(X+2u) 0 x+2j

Similarly,

2(x+2u) 0 x+2p 0 0 x 0 -x

h . 0 2 -o 0 U 1 0 -P 0
6 x+21i 0 2(X+2p) 0 0 x 0 -x

0 4 0 2 v ji 0 -U 0

2 0 1 o"

0 2 0 1

_= pj hj/6 (3.50)
1 0 2 0

0 1 0 2

The jth layer matrice Aj, B i , .C and Mj are the same matrices introduced

by Lysmer and Drake (80) which were derived originally by Lysmer and

Waas (79) by a different method. Addition of these submatrices over the
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layers by the method of Lysmer and Drake (80), as shown in Figure 6

for a typical matrix A will result in

f 8V(K 2 A - iKC + iKCT + G- V2M) V dx - 0 (3.51)
x

For an arbitrary virtual displacement vector 6VT (37) we may write,

since the expression in parentheses is independent of x,

(K2A- iKC + iKCT + G- 2M) V=0 (3.52)

Equation 3.52 represents a nonlinear eigenvalue problem with eigenvalue

K2 and eigenvector V whose solution is usually obtained by the vector

iteration method. The analysis of the derivation of the solution of

Equation 3.52 will not be presented here but the reader is recommended

to refer to the excellent texts by Bathe and Wilson (11), Waas (117), and

Zienkiewicz (124) for engineering applications and by Ruhe (100),

Papaconstantinov (91), and Wilkinson (120) for theoretical discussions.

At a particular frequency, the generalized eigenvalue problem (Equation
2N 2N

3.52) has 4N eigenvalues I K2 and corresponding eigenvectors I: Vit
i

N being the number of layers. The eigenvalues may be, real, imaginary

or complex.

In the derivation of our eigenvalue problem we assumed that the

matrix moduli 0 be real. For a viscoelastic model we may substitute

the effective moduli of Equation 2.17 of Chapter II into matrix D,

which is

[D - e .e +21e 0 (3.53)

0 0 V
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where

Ae -2/3 'je (3.54)

and subscript e stands for effective or complex moduli. If matrix D is

real, the motion of the Rayleigh wave in the layers is determined by

the number of real wave numbers obtained from the solution of the eigen-

value problem. If matrix D is complex the eigenvalue problem has complex

etgenvalues. The real part of the eigenvalue determines the phase

velocity of the wave in the layers and the imaginary part determines the

attenuation of the wave in the horizontal direction. Thus,

phase velocity = REAL (wae
REAL (wavenumber,(5)

attenuation = 2 IMAG (wavenumber) (3.55a)REAL (wavenumber)

According to the theory of linear differential equation, if each

eigenvalue and the corresponding independent eigenvectors determine

a solution then a linear combination of these solutions is also a solution.

Therefore, if Ki for i = 1, 2N are the eigenvalues and Vi for i = 1, 2N

are the corresponding eigenvectors the complete motion of the layered

region may be obtained by superposition of these solutions as

2N ei(w t - Kix)
Sz Vi e(3.56)

in which each multiplier a is an amplitude factor specifying the

contribution of the mode i to the total motion. At the boundary with

no phase change the motion is

=Va (3.57)
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where V is the matrix whose columns are the eigenvectors V If the

displacement U in Equation 3.57 is known, the multiplier vector a can

be solved for as

= V1 U (3.58)

D. Vertical Boundary

Let us rewrite Equation 3.11

f(aij 6C1i - Fi 6Ui)dv = fT1 6Uids (3.59)
V S

and substitute Equation 3.13 into it; the result is

f(oij,j + F) 8Uidv + f(Ti - atiV) 6Uids = 0 (3.60)
v S

This equation can be satisfied, for an arbitrary 6Ui, if

oij,j + Fi = 0 , (3.61)

the equation of motion, and either

SUi = 0 (3.62)

on the rigid boundary or

f(Tt - atjv) 6Ui ds 0, (3.63)
s

the surface boundary condition on the vertical plane. The elemental

surface ds in this case is dz, therefore,

fTi aUdz = Ja ,. v 6Uidz (3.64)
s 5
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On the vertical plane the stress component in the z direction is zero

and the surface stress aijv in Equation 3.64, in vector form, is

v (axx, a xz) (3.65)

and the matrix moduli corresponding to Equation 3.28, in this case is

[v _ ] (3.66)

Now the right hand side of Equation 3.63 becomes

fav - S dz = 5 ST - Dv c dz (3.67)
S S

Substituting Equations 3.33, 3.38-3.42, and 3.57 into Equation 3.67, we

have

Z ; • S6U dz = (i A V K - C V) 6V (3.68)

Layers s

The derivation of this equation takes the same steps that lead to the

derivation of Equation 3.52. In Equation 3.68 all matrices and the

vector ; have been defined except for the matrix K. Matrix K is a

diagonal matrix whose diagonal elements are the eigenvalues obtained

from the solution of the eigenvalue problem. Equation 3.68 represents

the force applied at the boundary with the assumption that the finite

element region is removed. The reaction forces acting on the finite

element region follow then from the equilibrium consideration, i.e.,

a force equal and opposite to that of Equation 3.68

P= (i A V K- C V) o (3.69)

bI
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Substitution of a from Equation 3.58 into Equation 3.69 yields

P=LU (3.70)

where

L = i A V K V"1 - C (3.71)

is called the stiffness matrix of the vertical boundary.

E. Motion in the Finite Element Region

Rewriting Equation 3.10 with the assumption that the inertia

force be Fi, we have, in vector form,

f * 6E dv - p0w UT- U) dxdz a f6UT. Tv dz (3.72)
V S

The left hand side of Equation 3.72 can be written as

f(6 T . D; - ow 66T. U) dxdz f(6uTBT  D B U - 0.2 66T . U) dxdz

V V

(3.73)

where matrix B is given by Equation 3.6. Substituting Equations

3.38-3.42 into the expression 3.73, Equation 3.72 becomes

( vTN BT. 0 B NTv - o,2 6VTN. NV) dxdz = + 6vTN • Tv dz

S
(3.74)

where, from Equation 3.73, for a two dimensional expansion

,,Fir ( n-l) 0 I-n 2 0 hn(n+l) 0

N = Ni Nj NK NL I 0 h(n-1) 0I) -n2  0 15(n l)

(3.75)
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The integration limits on the right hand side of Equation 3.74 is

through the two vertical boundaries on the left and right hand sides

of the irregular region and the + signs represent the forces that are

acting to or away from the finite element region. All in all, there

are a maximum of four different forces acting at the vertical boundaries

thatare determined from the right hand side of Equation 3.74. One of

these forces was determined by Equation 3.69. If the incident energy is

from the left then there are three forces acting at the vertical boundaries.

A force PL determined by Equation 3.69 due to the incident energy at

the left hand boundary, a force PR due to reflection of energy at the

left boundary, and a force PT due to transmission of energy at the

right boundary. Thus, the right hand side of Equation 3.74 is integrated

to produce the above three forces, for an arbitrary 6V . Substitution

of Equations 3.6, 3.25a, and 3.75 into Equation 3.74, the first term

on the left hand side is integrated, for an arbitrary 6VT, to give

f N BT. D B NT dv = Ke (3.76)
V

Matrix Ke is an 8 by 8 stiffness matrix originating from four nodal points

of the element, each node having a horizontal and a vertical force. To

obtain the stiffness matrix for all elements Equation 3.76 must be summed

over the elements. Thus,

Ke - K (3.77)

Elements

Substitution of the contribution from Equations 3.45, 3.69, and 3.77

into Equation 3.74 will get

a'
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( MK- V2 ) = PT P R (3.78)

or

W2  
A A

(3.79)

The vector V represents the horizontal and vertical displacements of the

nodal points of the irregular region. Vector i is the known dis-

placements at the left hand boundary, obtained from the solution of the

eigenvalue problem. The unknown vectors VR the reflected displacements,

and vector VT. the right hand boundary displacement can be incorporated

into vector Vas follows. The first 2N elements of vector V are equal

to vector and if the vectors + VR are substituted for the 2N

elements of vector V, then the unknown vector $ can be solved for by

The last 2N elements of vector Yare equal to vector VT. Therefore,

Equation 3.79 can be written as

(K - _ + R - T )y (R - L)j. (3.81)

The unknown vector V in this equation can be solved for by the standard

method (28, 29).

rI



CHAPTER IV

ENERGY OF A PROPAGATING WAVE

A. Summary

Elasticity theory assumes the medium of propagation to be con-

servative, a condition in which no energy is lost or changed into other

forms. In reality this process if thermodynamically reversible only

if it occurs with infinitisimal speed, so that the thermodynamic

equilibrium is established in the body at every instant. Stressed body

however, is in motion and has finite velocity. The body is not in

equilibrium at every instant and, therefore, processes such as stress-

induced ordering or thermal displacement of the point defect, change

in dislocation through the crystal lattice, and viscous sliding at

grain boundaries will take place in it and cause it to return to equil-

ibrium. The existence of these processes has the result that the motion

is irreversible, since they require the overcoming of a barrier to

initiation. At the end of each cycle of stress it is impossible to

reproduce exactly the state of the start; hence, there will be hysteresis

effects and energy dissipation or attenuation (Figure 1). Because of

these effects the amplitude of the propagating Rayleigh wave falls off

somewhat more rapidly than elastic theory predicts. Although attenuation

is extremely important in practice, it must still be, in some sense,

small, since otherwise waves would not propagate to any appreciable

36



37

distance. For large attenuation the propagation process becomes one

of the diffusion rather than propagation. Since waves

propagate, the assumption of small attenuation keeps the theory of

elasticity valid.

The dissipation of energy arises from such a variety of mechanisms

that is impossible to discuss them all here. The most effective of

all mechanisms fall into the class of viscoelasticity in which the

energy of the wave field is taken up by processes such as defect in

mobility, diffusion rate, phase change, etc., and is restored

partially or completely to the field with a delay. As a result of

this delay, the restored energy finds itself partially out of phase

with the original wave and destructive interference takes place (114).

B. Energy Flux Vector

The energy flux vector Ei(t) at time t is defined as the rate

at which energy leaves the material across an element of area normal

to the xi - axis, measured per unit area. It is given by

E1(t) - - a..(t) Oi(t) (4.1)

where 0 is the velocity vector created by the application of the stress

tensor aij, the minus sign is the indication that the energy is

leaving the material. For an isotropic, elastic medium, the direction

of the energy flow is normal to the wavefront. Equation 4.1 fluctuates

with time and a mean energy flux vector is defined as the average of

Ei(t) over a cycle. Thus,
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2n

fi E.(t) dt (4.2)
0

The energy flux vector, El, contains three components. Corres-

ponding to the directions of propagation, i.e., in vector form,

Ei E . . U (4.3)

where matrix a and vector 1- re given byat

o_- Oyx  Oy Gyz

az ZX zy zz

U EXP (i(wt - K x - K - Kz)) (4.4)

at at Yx Y

For a plane wave propagation in the x direction,

vector E reduces to a one dimensional energy flux, E, and is given by,

setting i - 1, and j = 1,3 in Equation 4.1, we have

E ,- ( oL-c (4.5)

at
where vectors a and are given by

S- (Oxx, cx) , U L (Ux, Uz) EXP (i(wt- Kx)) (4.6)

the stress vector represents normal and shear stresses on the surface

area normal to the direction of propagation. The energy in Equation 4.5
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in an elastic medium is normal to the wavefront, i.e., the energy is pro-

pagating in the x direction normal to the z axis, only if the propa-

gation constant K is real. Let us analyze the state of vector K in

general. From Equation 4.4, vector K in a plane propagation is

K Kx + K z (4.7)

where x and z represent direction cosines in the x and z directions,

respectively. If the matrix moduli D in Chapter III contains the

effective moduli Ke and ue, discussed in Chapter II, Section C, then

vector K is complex and is given by

K = KR- iKI (4.7a)

Rewriting the vector U of Equation 4.4 in two dimensions

U x(z)
= EXP (i(,t - K •)), 

(4.8)uz(z}

where

X xx + zz, (4.9)

and substituting Equation 4.7 we have

. (z)e eK(I*.i(Wt (4.10)

where KI is called the attenuation vector. To include attenuation from

the vector U(z) it is better to write Equation 4.10 as

IU1(z)I e- K I el(wt -KX

-K u~~ (4.11)
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The dot product K X " can be expanded as

K1 " = X + yZ + ARG(U(z)) (4.12)

where s and y represent the components of K1 in x and z directions,

respectively, and ARG(U(z)) is the attenuation factor due to the vector

U(z). The existence of a surface wave depends on whether vector KI is

zero or not.

The attenuation vector KI, given by Equation 4.7a, is not, in

general, perpendicular to the propagation vector KR; the angle e

between the directions of the two vectors is between zero and n/2,

i.e.,

0 < e < n/2. (4.13)

when e = 0, KI = 0, and therefore there exists an undamped wave.

When e = n/2, the direction of attenuation vector KI is perpendicular

to the direction of propagation vector KR and the wave propagates in

the direction normal to the surface of constant phase and attenuates

in the direction normal to the surface of constant amplitude. This

occurs when B = y = 0 in Equation 4. M- and the attenuation is due to

the vector U(z); that is, the amplitude will dampout in the z

direction. This is the classical Rayleigh wave.

. . . . . . . . . . . .. . .. . . . . . . .. . .. ...
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The surface of constant phase may be used to determine the phase

velocity of the wave by setting the progressive part of Equation 4.11

equal to a constant, say, n/2,

ei(wt - K.X) =eR/2  (4.14)

or

wt - K X X = - in/2 (4.15)

Performing the dot product in Equation 4.15 we get,

wt - KxX - KzZ = - in/2 (4.16)

Taking the partial derivative of x and z with respect to t in Equation

4.16, we have,

S = w, - K LL = 0 (4.17)
X zat

Solving for !-and 2 , the phase velocities in the horizontal andat at
vertical directions are given by

V !- V z = ! (4.18)

Kx  Kz

If the vector K is complex then

KX  Kx + i, Kz 
= Kz + iy, (4.19)

and

V= = w(K-is) = AK i , (4.20)
x T7x 2

or approximately

VX VX - isVx = (- is), (4.21)
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for small 0 such that a2 -, O. Similarly,

Vz = Vz(1 - iy), (4.22)

for small y such that y 0 O. The size of 0 and y are ordinarily between

.01 and .001 of the Kx and of the Kz , respectively so that the above

assumption is valid.

C. Energy Flux in Terms of the Wave-
Number and the Amplitude

Let us rewrite Equation 4.5 and integrate it through a period as

in Equation 4.2; the result is

2n0 2n

Since most of this study is concerned with the energy

and its balance, the analysis of the derivation of the energy relationship

seems essential. Thus, we study Equation 4.23 in detail. Consider the

dot product UT • a which is the energy density normal to the z plane;

the energy through that plane is

h T IhT
f U a dz = U UT  Dv c dz (4.24)
0 0

where

D v = [ 0 (4.25)
0 0

and

er,
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0

ax

0 0 az (Ux, UZ) (4.25a)

a a

az ax

Decomposing the matrix in Equation 4.25 as

_x ax
0 a O 0 (4.26)

0 " = 0 az

a a a a
L Tz ax 0 _ ax . az 0

and substituting this and Equation 4.25 into Equation 4.24 gives

r0 0
fh6T D ;dz = hT.( 0 --]
0 -- 0 [ 3 z

-T o

a

+:1 : )dz

0
A+2u X 0 a

+ 0h 0 + dz0 a

z +2i-)(-iK)

0~ hl 0[ 0jaz
h - 0 X0 dz. (4.27)f" 6T .Ddz ='T 3-0
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Substituting Equations 3.38, 3.40 and 3.42 into Equation 4.27 we

have

T dz h N V dz - iK -N a N Vdz (4.28)

0 0 * - 0

where

CL [ 0  aL- (4.29)- u 0 - 0

From Equation 3.42, if we substitute

z h2 a (4.30)

and

] N= 1 (4.31)
--h 0 -1 0 1

into Equation 4.28 and changing the variable of integration we have

1-n 0
/h T 1 -- 0 1 0 dn6vD dZ. f jTI/2C'2

o0 -1 l+, 0 - 0 1 0 1

0 l+n _

1-n 0

-iK /2 a V dn
-1 f+n 0 - 0 -n 0 +n

(4.32)

or

____ I
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fu. vjcdz . IV. -d sI

h dzV n 1 lK f j Ih s d, (4.33)o - -1 --

where

o -).O-n) o0(1n

-1-n) 0 U(1-n) 0R=

0 -X(l+n) 0 A(l+n) (4.34)

0 Vt(l+n) 0

and

(l-) 2(X+2o) 0 (l-n 2)(X+2u) 0

0 (1-)2U 0 (1-n 2)
(1-n) (X+2u) 0 (l+n) (X+2u) 0 (4.35)

0 (1-n2)I 0 (l+n)2 _

Integration of Equation 4.33 yields

fh6TU Dv;dz - VT Cj i + iK Aj . (Cj + iKAj) V (4.36)
0 -

for the jth layer. Where

0 A 0 - 2(x+2u) 0 x+2v 0

v 0-a 0 h. 0 2u 0 1-, and A. -2 (4.37)
S0 x 0 _x 6 X+2vi 0 2(X+2u) 0

LP 0 -V 0 _ 0 0 2u

Suiming up Equation 4.36 over all layers results in

2N
ihf uT. Dyedz = I T. (C j + iKj) V jT. (C+ IKA) V (4.38)

Layers 0 Jul

m-
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Recall that

U U(z)e l(" 'K J , and U = N V (4.39)

therefore,

= Vet(OtKx) and 1- i w.V (4.40)

Substituting Equations 4.38 and 4.40 into Equation 4.23, with a

realistic definition, the average energy which is carried across the

vertical boundary, by the mode K, is given by

2n
= if R(i.V)T • (C+ iKA) R(V)dt (4.41)

0

when matrices A and C are real, and by

2n

E = _ f R(iw)T . (R(C) + iKR(A))R(V)dt (4.42)
0

when matrices A and C are complex, where R represents the real part.

Now let

V (V1 + iV2)eit = (Vl + iV2)(cos ut + I sin wt) (4.43)

Then substituting

R(V) - VI cos Wt - V2 sin wt,

R(iJV) - -(Vl sin wt + V2 Cos tt) (4.44)

R(OV)T. R(V) , - V sin Wt cos t - V •2 cos2 Wt +

WVT sin 2 Wt + V 2 sin wt cos wt (4.45)

and

______
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2n 211 2v
f' sin wt coS wt dt 0, -fosln2 wtdt z fo cosz wtdt 112

Tt0 HE0
(4.46)

into Equation 4.41 yields,

. T -X T+_ + iKA)V^) , (4.47)

where VI and V2 are the real and imaginary of the vector V.

Equation 4.47 expresses the energy carried by the mode K. If the

incident energy of the Rayleigh wave across the vertical boundary is in

the fundamental mode K, given by Equation 4.47, then the reflected and

transmitted energies must be calculated through the modes which are

produced by the incident energy. Therefore, if L is the number of

different modes produced by the incident energy then the reflected and

transmitted energies are given by

LL s- _s iTs (C - s-iK l (4.48)
ER S1(Vf s* (C KA)'2 2s I

and
L

ET s s ( + i~ 5A) 2 s- vT ( + IKA)V 1s , (4.49)Tl2s - - -

respectively.

0. Attenuation

If we substitute the effective moduli of Equation 2.17 into the

energy relation Equation 4.47 it produces an additional term called

the power loss or dissipated power in the system. This power loss is

due to the viscoelastic part of Equation 2.17, and is given by



48

P (D (T" (IM(+) + iKIM(A))i V + V (4.48)

2 21 '-~ 2' (M(C) + KMA )

where IM represents the imaginary part or the viscoelastic part of the

matrices C and A. The ratio of the average power loss, Equation 4.48,

to the average rate of energy transport, Equation 4.47, is called the

attenuation and is denoted by a dimensionless parameter 2nQ I; thus,

PD
2RQ-1  average dissipated power , Drate of energy transport E (4.49)

If the complex wavenumber

K = KR + iK1  (4.50)

is given, or for a given period, is found from the solution of the eigen-

value problem for the layered region, then the attenuation is given by

-I 2K I- K (4.51)

Equation 4.49 is general; it can be used for spatial attenuation, i.e.,

attenuation arising from discontinuities along the path of the wave,

or for temporal attenuation, i.e., attenuation arising from time,

temperature or other viscoelastic behavior of the medium.

E. Change of Wavenumber at the Vertical Boundary

The existence of reflected energy at the vertical boundary

suggests that the phase velocity at the left and the right hand sides

of the boundary are different. Since the wave is harmonic then the

change in velocity is due to the change in wavenumber. This change

must be calculated by means other than from Equation 3.81 whose solution

gives the displacements at the vertical boundary.

I,
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Auld (7, 8) has used a perturbation theory and has derived a

relation to calculate the change in the wavenumber due to various

mechanisms. Auld's relation may be revised to be used in seismic

waves; the form suitable here may be expressed as

f E . AD ho 2 PWU T. i)dz
z

6K = 4E (4.52)

where

D - +2v ] , (4.53)

0 0 M-

- ax 'z 'Ux z 'au = au a, Z + a-u- , (4.54)

= U(z)e i(wt - KX) (4.55)

E is given by Equation 4.49 and A denotes the contrast between the two

different media. Use of Equations 3.33 and 3.34 reduces the numerator

of Equation 4.52 to

S 0 - 0a( aX 1 ~ ax
Lu 0 L 5D 0 La U h dz (4.56)

a a a a )

az ax Pz ax.

Decomposition of the operating martix into two matrices, depending on

x or z only, gives

b II
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ax 3x

0 0 0 + 0 i- (4.57)
a 0 a

.ax ax L 0- 0 J

and operating on the matrix with the partial derivative with respect to

x on the corresponding vectors results in

L - f((vz - iKI)u)T.AD (vz - iKI)U - pw21T. U)dz, (4.58)
z

where matrix vz is given by the second term of Equation 4.57, and

1= 0 0
0 i

Again, by using

U NV (4.59)

I_ - n 0 ,+r] - I < (4.60)
0 l-n 0 I+n

z a 1 a <0 z h (4.61)

a N I- [- 0 1 01 (4.62)
z-n h 0  -1 0 1

Equation 4.58 becomes (for the moment we set AD D, AP p)

_________________
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-l 0 01 -n 140 T
L f(0 1 0 1 00l -n 0 /[ 0

1 -1 0 1 0 0I/ 1 -in 0 ol)

-(1-n) 2  0 l-n 2  0-
0 0 0 0l-n)0 0 n2

0 1 0 )h2dn. (4.63)

0 -n2 0 (+)2

After performing the transpose and corresponding multiplications,

Equation 4.63 becomes

- 2 0 - n 0

2 0T. 0 +2 ) 0 -(+2 )

- 2 h n (4.63)
-11h-n- 0 0

0 -(x+2u) 0 x2

0 - (l-n ) 0 ( l+n)

-(l-n) 0 -0(l+n) 0
0 u(l-) 0+n)

(-n) 0 x(1+n) 0
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0 -(1-n) 0

+ K -U(l-n) 0 U(1-n) 0

0 -X(1+Ti) 0 (l+n)

0 i(l+n) 0

(X+2u)(1-n)2  0 (X+2u)(1-n 2)  0

K2  0 (l-)2 0 W(l-n 2)

(X+2 u)(1-n2) 0 (x+2u)(1+n)2  0

0 VO-n2) 0 (1+n) 2

} 2 2-
(1-02 0 -n 0

2 0 (1-n) 2  0 1-n2

- p T 2 Vh/2dn (4.64)
l-n 0 (1+n) 2  0

- 0 I-n2 0 (1+n)2

Now, the integrations of

1 1 1 2 1 2 8
f (1-n)dn = f (l+n)dn = 2,f (1-n) din f (1+0) dn = (4.65)
-1 -1 -1 -1

and
(1-n)dn 4

-1

reduces Equation 4.64 into

L (1/2 Gj + iKFj + K2AJ - W21) ! (4.66)

where matrices i, A, and Mj are given by Equations 3.48- 3.60 and
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o -(x-.) 0 xu

F 0 Aji 0(4.67)
2 -0 0%£ o -( + ) 0 - (.7

0-(x+u) 0 -(X-U) 0

Since j represents a typical layer, the sum of Equation 4.66 over all

layers, when substituted into Equation 4.52 gives, considering now AD

and AP,

vT-(1I2 AG + iK F+ K2b A - 2 M)V

SK w 4E (4.68)

When calculated, this 6K may be added to the wave number of the left

hand side of the boundary; the phase velocity of the right hand side of

the boundary can be calculated by the expression,

Vx a • *(4.69)+6 K

For different periods the dispersion curve of the desired medium can be

computed.

Equation 4.68 may also be used for the determination of attenuation.

For this purpose if

6K = 6KR + iSK1  (4.70)

then

6T (1/2 AGI + K A F, + K2 (4.71)

and the attenuation is given by
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1 6 (4.72)

6K

where I stands for the imaginary part. Since attenuations due to various

mechanisms are additive, Equation 4.72 may be added to the attenuation

obtained due to viscoelastic behavior.

I I



CHAPTER V

APPLICATION OF THE METHOD

A. A Model

To apply a model to the theories discussed in the last chapters,

we chose Herrin's models (49) of the Canadian Shield and Basin and Range

provinces for the elastic part of thv medium. The Basin and Range

province is used in the left layered region and the Canadian Shield is

used in the right layered region; the order is reversible. For the

irregular region we chose different combinations of the Basin and Range

province and the Canadian Shield. The data given in Herrin's model are

thicknesses, densities, compressional velocities, and shear velocities

of the two layered media. To account for the anelasticity in the model

a complex part for the compressional velocities and shear velocities

may be assumed. Since the elastic moduli are obtained by using the

expressions

= P(V - 2Vf 2  (5.1)

2 (5.2)

where, x and u are the elastic moduli of the medium, and Vp and Vs are

the real parts of compressional and shear velocities, respectively,

then the effective moduli, or complex moduli, as given in Equation 2.17,

may be obtained by

55
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Xe " p(Vp2 _ 2Vs 2 (5.3)

Pe = PVs 2  (5.4)

for complex velocities. For this reason, in our model, any viscoelastic

behavior of the medium may be incorporated in the imaginary parts of the

compressional and shear velocities. Thus, for the viscoelastic part

of the medium in this paper, three different sets of data are

used: A small enough (.1 percent of the real part) imaginary parts for

compressional and shear velocities; a starting constant shear quality

factor, QV' for the Basin and Range province and a starting constant Q

for the Canadian Shield; and finally the starting QB model of Lee and

Solomon (69a), whose Q of Western U. S. and East-Central U. S. are

used in Basin and Range provinces and Canadian Shield, respectively.

When Q is given, the imaginary parts of V and V are determinedp P
by the following expressions. From

REAL (Vs)  (5.5)Q 2 SMAG5(V

V p = REAL (Vp + I IMAG (Vp), (5.6)

Vs = REAL (V ) + i IMAG (V s), (5.7)

REAL (VS) (5.8)
IMAG (Vs) = 2Q --2

And from (69a),
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QC'"4 Qe (5.9)( V s

we have
REAL (V p)IHAG Vp) ZQ ° (5.10)

Both regions of the model are assumed each to contain 15 layers

with a total depth of 250 kilometers; this depth includes the crust and

upper mantle so that any partial melting zone in the upper mantle may be

studied. The irregular region I is divided into 15 by 15 network of

elements whose total number of elements and total number of nodal points

of the elements are N2 and N(N + 1), respectively, where N is the number

of layers. The slightly adjusted Herrin model for the above geometry

is given in Tables 1 and 2. The integer N in Table 2 represents the

number of elements, in the finite element region, that have the same

property. The numbers assigned to the integer N in Tables 2 and 2A are

completely arbitrary.

B. Real Data

A set of periods from 9 to 60 seconds along with the data of

Table 1, may be used as an input for the solution of the eigenvalue

problem, Equation 3.52, in the layered regions. The fundamental solution

of the eigenvalue problem corresponding to each period is the largest

eigenvalue or the largest wavenumber selected from the 2N elgenvalues.

The phase velocity corresponding to each period is given by

PHASE VELOCITY = OMEGA (5.11)

WAVENUMBER '

for the given period and corresponding frequency.
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The computer program RALEE used to calculate the unknown of the

medium is the revised form of the program RALEEM written by Drake (29)

in 1972. To test the program RALEE we used Lysmer and Drake's (80)

data of the Sierra Nevada and calculated the phase velocities of Rayleigh

waves for a range of periods of 6 to 10 seconds and the horizontal and

vertical amplitudes for a period of 6 seconds. The agreement is excel-

lent for the phase velocities and good for the amplitudes; but the

small difference in the amplitudes may be due to scale arbitrariness.

The phase velocities are given in Table 16 and the amplitudes are shown

in Figure 16.

The wavenumbers and the phase velocities calculated for the two

layered systems of the Basin and Range province and the Canadian shields

with the data of Table 1 and the periods of 9 to 60 seconds are also

given in Tables 3 and 4, and the corresponding dispersion curves are

shown in Figures 7 and 8.

To test the effect of layering we reduced the number of layers

from 15 to 3 and assumed two layers for the crust and a deep layer for

the upper mantle. The computed Rayleigh wave phase velocities are some-

what higher than those of the 15 layered case. The difference may be

due somewhat to the averaging data of 15 layers into 3 layers but it

is mostly due to the large dimensions of the elements as compared to

the wavelength of the shear wave (104).

To test the computer program RALEE for the irregular zone I in

the real case, we first assumed the three zones L, I and R of Figure 5

to have the same properties as the Basin and Range provinces and calcu-

lated the reflected and transmitted energies. For the period range of
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10 to 80 seconds the sum of the reflected and transmitted energies is

very close to incident energy. These data are shown in Table 5.

Second, we set the boundary between the Basin and Range province and

the Canadian Shield at the right hand side of the zone L, i.e., we let

the zone L be the Basin and Range province and zones I and R be the

Canadian Shield. Third, we set the boundary at the left hand side of the

zone R, i.e., we let the zones L and I be the Basin and Range province

and zone R be the Canadian Shield. Fourth, we set the boundary at the

middle of zone I, i.e., we let the zone L and one-half of the zone I be

the Basin and Range province and one-half of the zone I and zone R be

the Canadian shield. Finally, we let the zones L and R be the Basin

and Range province and the Canadian shield, respectively, but gradually

changed the parameters of the zone I from the parameters of the Basin

and Range province into the parameters of the Canadian shield. The sum

of the reflected and transmitted energies determined for each of the

above models in the real case, was found to be almost equal to the

incident energy. The transmitted energy in all of the above models,

in the real case, is more than 99% except for a few period of 18 to 25,

in the second case, in which for each period the reflected energy is

the highest, i.e., from .05% to 2.2%. On the other hand, in the third

case, the reflected energy is the smallest, i.e., from .007% to .06%.

Therefore, the decrease in reflected energy is from left to right with

respect to the position of the vertical boundary; nevertheless, the

process is reversible. The values for the above cases are given in

Tables 6, 6A, 6B, and 6C, respectively.

____ I



60

For the determination of the phase velocity in the irregular

region, in the real case, the boundary displacements, determined by

Equation 3.81, are used in Equation 4.68; the left boundary displace-

ments are replaced by the vector jT and the right boundary displace-

ments are replaced by the vector V in Equation 4.68. Substitution of

the resulting 6K into Equation 4.69 determines the fundamental mode

phase velocity. Repetition of the use of Equations 4.68 and 4.69,

corresponding to the number of distinct periods gives the phase

velocities of the irregular region for each case mentioned in the

previous paragraph. The dispersion curves for each case are shown in

Figures 9, 9A, 9B, 9C, and 9D, respectively.

C. Complex Data

The geometry of the model remains the same in the viscoelastic

case. Therefore, the real parts of the complex Vp and Vs velocities do

not change in the complex case. Since thicknesses, densities, and

periods are assumed to be real in the elastic and viscoelastic medium,

they will not be repeated again in this section. Thus, for the complex

case of the model we assigned three different sets of data to the

imaginary parts of the complex Vp and Vs velocities. First, the imag-

inary parts of the Vp and Vx were assumed to be .1 percent of their

corresponding real parts. Second, a constant shear quality factor for

each zone of L and R was assumed and the corresponding compresslonal

quality factor Q. and the imaginary parts of V and Vs were calculated.

Third, we used the Q0 model of Lee and Solomon (69a) and calculated

the corresponding compressional quality factor Q and the imaginary
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parts of Vp and Vs. The imaginary parts of Vp and Vs for the three

cases are shown in Tables 7, 8, and 9.

For the same number of periods that was used in the real case,

the values, given in Tables 7, 8, and 9 are used as the input for the

solution of complex eigenvalue problem, Equation 3.52, in the layered

regions. The fundamental solution of the complex eigenvalue problem

corresponding to each period is the largest elgenvalue with a negative

imaginary part, selected from 2N eigenvalues. The phase velocity and

the attenuation corresponding to each period are given by

PHASE VELOCITY = OMEGAREAL (WAVENUMBER) (5.11a)

and
ATNAIN=2 x IMAG (WAVENUHBER) (5.12a)ATTENUATION REAL (AVENUMBER)

respectively. The real and imaginary parts of wavenumbers, the phase

velocities and the attenuations, corresponding to Tables 7, 8, and 9

are given in Tables 10 - 15 and the corresponding attenuation curves

and the dispersion curves are shown in Figures 10 - 15.

For the complex part of the irregular region I we used the

imaginary parts for Vp and Vs velocities, obtained from the of Lee

and Solomon (69a), in all cases described for the real case in section B.

In each case the sum of the reflected and transmitted energies is

considerably less than the incident energy; but the difference is

remarkably in accordance with the given QB value with respect to the

depth where the energy is computed. The attenuated percentage of

reflected and transmitted energies are given in Tables 5, 6, 6A, 6B,

and 6C.

__ __ _ I
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For consistency of the result, we asked H. Mack (80a) to input

our complex data in his computer program VERES. He calculated the

transmitted Rayleigh wave energy for the case where the medium is

considered to have the parameters of Basin and Range province. His

result agrees well with higher periods, fluctuates somewhat with the

intermediate periods, and agrees with periods of 13 - 15 seconds as

shown in Table 5. For periods lower than 13 seconds his program is

not applicable.

The determination of the phase velocity of the irregular region,

in the complex case, follows the same procedure of the last subsection;

however, since the change in the phase velocities between the real and

the complex cases are very small the dispersion curves would look the

same as the ones ih the real case. Thus, the repetition is not necessary.

Finally, for a check on the result we used the data of Lee and

Solomon (69a, pages 77 and 83) in our 15 layered systems and computed

the phase velocities and the attenuations for East-Central and

Western North America. The result is compared well with their result

which is obtained by inversion. The phase velocities and the attenuations

are given in Tables 17 and 18 and the corresponding dispersion and

attenuation curves are shown in Figures 17, 18, 19, and 20.

___



CHAPTER VI

SUMMARY AND CONCLUSION

The anomalous decay of surface wave amplitude may be due to

viscoelasticity and geometrical discontinuities of the medium. In

this paper the path of a Rayleigh wave was assumed to be through the

Basin and Range provinces and the Canadian Shield. The two regions

were treated as elastic and Inelastic; and the surface of intersection

between them was considered to be an approximation to a plane vertical

boundary.

With the plane vertical boundary removed, the two regions, as a

layered system, were studies as separate elastic and viscoelastic media.

The Rayleigh wave phase velocities, amplitudes, and the attenuations

of the two regions, with the technique of finite element, were computed

for a range of periods. The change in phase velocities, in each region

due to viscoelasticity in three different cases of data, were from .01

percent to 0.5 percent of elastic phase velocities, an almost negligible

amount. Consequently, the dispersion curves, with the range of periods

of 9 - 60 seconds, are almost similar in elastic and viscoelastic cases

in all three zones. On the other hand, the amplitudes and attenuations,

in three cases of different viscoelastic parameters in the layered

system, are in accordance with the input data and agree well with the

very limited published data. Though small, the difference in amplitude

and attenuation due to viscoelasticity appear to be significant and is

63
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in accordance with the amount of imaginary parts of Vp and Vs velocities

with respect to the depth of the layers. The result of the use of the

model of Lee and Solomon (69a) also confirms the above result, in

addition to being in excellent agreement with their result.

The reflected and transmitted energies through the vertical

boundary are functions of position of the vertical boundary with respect

to the two media of L and R, in the real case. They are in addition

to the above condition, functions of attenuation or the as well,

in the viscoelastic case. The reflection of energy, although small in

all cases, decreases as the vertical boundary, in our model, moves from

left to right; but the process is completely reversible. The highest

reflection of energy (.04% to Z.24) occurs where the vertical boundary

is at the right hand side of the zone L so that the zones I and R both

have the parameters of the Canadian shield and the zone L has the Basin

and Range parameters. The one position of the vertical boundary where

the reflected energy has the intermediate value (.04% to .5%) is in

the middle of the zone I; the reflected energy in the real and complex

cases are almost equal; the sum of the reflected and transmitted

energies, in the real case are almost exactly equal to the incident

energy and the transmitted energy, in the complex case is the highest.

Due to the fact that the reflected energy, in all of the models

tested, is very small, it may be concluded that for a normal incidence

of Rayleigh wave at a vertical boundary between the Continental provinces

the mode conversion is too small to measure in the real crust. Due

to the computer core limitation the number of sublayers and

the size of the elements may be somewhat large compared to

the wavelength of the shear wave.
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TABLE 1

HERRIN'S MODEL OF BASIN AND RANGE PROVINCES
AND CANADIAN SHIELD, SLIGHTLY ADJUSTED TO

FIT THE FIFTEEN LAYERED MODEL

Basin and Ranoe Canadian Shield

Depth Densily VP V Depth Density (SVs
(KM) (G/CM ) (K04/SEC) (W SEC) (KM) (G/CM) (VMsEC)(*I/SEC)

0-14 2.640 6.000 3.540 0-14 2.610 5.800 3.470

14-19 2.640 6.000 3.560 14-19 2.620 6.700 3.740

19-20 2.640 6.700 3.600 19-20 2.620 6.700 3.740

20-28 2.640 6.695 3.595 20-28 2.620 6.700 3.740

28-30 2.640 6.650 3.550 28-30 2.620 6.700 3.740

30-34 2.900 7.900 4.430 30-34 2.620 7.000 3.820

34-50 2.900 7.900 4.425 34-50 2.900 8.050 4.620

50-60 3.420 7.899 4.420 50-60 2.900 8.050 4.620

60-80 3.400 7.880 4.390 60-80 2.900 8.050 4.620

80-90 3.400 7.860 4.355 80-90 2.920 8.100 4.540

90-100 3.392 7.820 4.320 90-100 3.400 8.400 4.660

100-120 3.382 7.678 4.182 100-120 3.500 8.500 4.500

120-140 3.380 7.730 4.220 120-140 3.500 8.500 4.500

140-150 3.400 7.800 4.270 140-150 3.500 8.500 4.500

150-200 3.400 7.890 4.430 150-200 3.500 8.500 4.500

APPENDIX A

I
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TABLE 2

DATA OF TABLE 1 FOR THE FINITE ELEMENT REGION;
N REPRESENTS THE NUMBER OF ELEMENTS HAVING

THE SAME PROPERTY (REAL CASE)

Denth DensNt N K V1C
(KM) N (KM/CM.) N (KM/SEC) N /9EC)

2.64 15 6.00 15 3.54 15

0 14 2.61 1 5.80 1 3.47 1

2.64 14 6.00 14 3.56 14

14 14 2.62 2 6.70 2 3.74 2

2.64 13 6.70 13 3.60 13

19 14 2.62 4 6.70 4 3.74 2
2.64 11 6.69 11 3.59 13

20 14 2.62 6 6.70 6 3.74 4

2.64 9 6.66 9 1.55 11

38 14 2.62 8 6.70 8 3.74 6
2.90 7 7.90 7 4.43 9

30 14 2.62 10 7.00 10 3.82 8

2.90 5 7.90 5 4.42 7
34 14 2.90 12 8.05 12 4.62 10

3.42 3 7.90 3 4.42 5

50 14 2.90 14 8.05 14 4.62 12

3.40 1 7.88 1 4.39 3
120 14 2.90 11 8.05 11 4.62 14

3.40 4 7.86 4 4.36 1

140 14 3.40 13 8.10 13 4.62 11

2.92 2 7.82 2 4.32 4

150 14 3.50 13 8.40 13 4.62 13

3.38 2 7.68 2 4.18 2
250 14 3.50 13 8.50 13 4.62 13

3.38 2 7.73 2 4.22 2

3.50 13 8.50 13 4.54 13

3.40 2 7.80 2 4.27 2
3.50 13 8.13 13 4.66 13

3.40 2 7.85 2 4.43 2
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TABLE 2a

DATA FROM TABLE 2, WITH LEE AND SOLOMON'S DATA, FOR
THE FINITE ELEMENT REGION IN COMPLEX CASE

V (KM/SEC) Vs (KM/SEC)p
REAL IMAG (XP) NREAL IMAG (V )
(Vp) (x1O- ) (Vs) (xN

6.00 0.40 15 3.54 6.00 15
5.80 0.14 1 3.47 0.17 1
6.00 0.40 14 3.56 6.00 14
6.70 0.14 2 3.74 0.18 2
6.70 0.40 13 3.60 6.00 13
6.70 0.14 4 3.74 0.18 2
6.69 0.20 11 3.59 0.23 13
6.70 0.14 6 3.74 0.18 4
6.66 0.20 9 3.55 0.23 11
6.70 0.14 8 3.74 0.18 6
7.90 0.20 7 4.43 0.28 9
7.00 0.14 10 3.82 0.18 8
7.90 0.20 5 4.42 0.28 7
8.05 0.17 12 4.62 0.23 10
7.90 0.20 3 4.42 0.28 15
8.05 0.17 14 4.62 0.23 12
7.88 0.20 1 4.39 0.28 3
8.05 0.17 11 4.62 0.28 14
7.86 9.00 4 4.36 13.00 1
8.10 0.17 13 4.62 0.23 11
7.82 9.00 2 4.32 13.00 4
8.40 0.16 13 4.62 0.23 13
7.68 9.00 2 4.18 12.00 2
8.50 0.16 13 4.62 0.23 13
7.73 9.00 2 4.22 12.00 2
8.50 3.60 13 4.54 0.23 13
7.80 9.00 2 4.27 13.00 2
8.13 3.60 13 4.66 5.40 13
7.85 5.00 2 4.30 7.00 2
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TABLE 3

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES
AND CORRESPONDING PHASE VELOCITIES OF THE

LEFT LAYERS (REAL CASE)

Wavenumbers (KM"1) Phase Velocity (KM/SEC)

Funda- 1st 2nd Funda- Ist 2nd
mental Higher Higher mental Higher Higher
Mode Mode Mode Mode Mode Mode

0.2009 0.1618 0.1589 3.475 4.315 4.394

0.1806 0.1453 0.1420 3.478 4.323 4.423

0.1497 0.1207 0.1168 3.496 4.337 4.481

0.1179 0.0960 -- 3.551 4.363 --

0.0962 0.0792 -- 3.627 4.402 --

0.0853 .... 3.681 ....

0.0765 .... 3.732 ....

0.0662 .... 3.796 ....

0.0541 .... 3.865 ....

0.0460 .... 3.902 ....

0.0400 .... 3.924 ....

0.0354 .... 3.940 ....

0.0318 .... 3.955 ....

0.0262 .... 3.997 ....

0.0221 -- - 4.066 ....
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TABLE 4

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES
AND CORRESPONDINn PHASE VELOCITIES OF THE

RIGHT LAYERS (REAL CASE)

Wavenumbers (KM-1) Phase Velocity (K/SEC)

Funda- Ist 2nd Funda- Ist 2nd
mental Higher Higher mental Higher Higher
Mode Mode Mode Mode Mode Mode

0.2002 0.1545 0.1533 3.487 4.522 4.553

0.1799 0.1368 0.1321 3.493 4.537 4.590

0.1490 0.1150 -- 3.514 4.552 --

0.1174 0.0915 -- 3.569 4.577 --

0.0958 0.0757 -- 3.645 4.614 --

0.0849 .... 3.700 ....

0.0761 .... 3.755 ....

0.0656 .... 3.830 ....

0.0533 - -- 3.928 ....

0.0449 -- - 3.996 ....

0.0388 .... 4.045 ....

0.0342 .... 4.084 ....

0.0305 .... 4.120 ....

0.0250 .... 4.198 ....

0.0208 .... 4.308 ....
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TABLE S

DISTINCT PERIODS AND PERCENTAGE OF REFLECTED AND
TRANSMITTED ENERGIES PASSING THROUGH THE
VERTICAL BOUNDARY (THE CASE WHERE ALL
THREE ZONES HAVE THE BASIN AND RANGE

PROPERTIES) THE LAST TWO COLUMNS
ARE THE RESULT OF H. MACK

Real Complex H. Mack (Complex)

Period Reflected Transmitted Reflected Transmitted Period Transmitted
Sec Energy Energy Energy Energy Sec Energy

10 .0011 99.9954 .0073 84.2120

12 .0054 99.9945 .0112 88.2821 13.8 87.5

15 .0007 99.9994 .0017 92.5926 14.2 94.0

18 .0010 99.9989 .0024 95.3736 15.1 99.4

20 .0005 99.9988 .0018 96.4662 20.5 99.8

22 .0004 100.0000 .0011 97.0742 22.3 96.6

25 .0001 99.9996 .0002 97.2620 25.6 93.6

30 .0001 99.@996 .0055 96,6856 28.4 93.4

35 .0001 99.9996 .0165 96.1306 32.0 94.0

40 .0001 99.9997 .0186 95.8209 39.4 92.0

45 .0001 99.9997 .0155 95.7497 42.7 94.7

50 .0001 100.0000 .0135 95.7523 46.5 96.0

60 .0001 99.9998 .0122 95.8963 51.2 95.3

70 .0001 99.9996 .0223 96.0832

80 .0001 100.0000 .0001 96.1831
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TABLE 6

DISTINCT PERIODS AND PERCENTAGE OF REFLECTED AND
TRANSMITTED ENERGIES PASSING THROUGH THE
VERTICAL BOUNDARY (THE CASE WHERE THE

VERTICAL BOUNDARY IS AT THE RIGHT
HAND SIDE OF THE ZONE L

Complex Real

Period Reflected Transmitted Reflected Transmitted
Sec Energy Energy Energy Energy

10 .1795 99.1060 .2581 99.7302

12 .0733 99.3311 .0551 99.9465

15 .1209 99.3781 .1396 99.8880

18 2.2780 97.1127 1.9161 98.9499

20 .3447 99.2575 .3268 99.6688

22 1.0353 98.5935 1.0766 98.9225

25 .9698 98.6958 1.0128 98.9857

30 .3175 99.3742 .3549 99.6445

35 .4085 99.2819 .4607 99.5385

40 .1525 99.5212 .1645 99.8983

45 .1209 99.4230 .1318 99.8678

50 .0832 99.4036 .0892 99.9100

60 .0555 99.3044 .0586 99.9413

70 .1309 99.1301 .1081 99.8914

80 .0454 99.0328 .0439 99.9560
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TABLE 6A

DISTINCT PERIODS AND PERCENTAGE OF REFLECTED AND
TRANSMITTED ENERGIES PASSING THROUGH THE

VERTICAL BOUNDARY (THE CASE WHERE THE
VERTICAL BOUNDARY IS AT THE LEFT

HAND SIDE OF THE ZONE R)

Real Complex

Period Reflected Transmitted Reflected Transmitted
Sec Energy Energy Energy Energy

10 .0127 99.9840 .0259 84.2332

12 .0071 99.9923 .0123 88.2958

15 .0048 99.9943 .0061 92.5954

18 .0344 99.9659 .0342 95.3359

20 .0145 99.9848 .0137 96.4257

22 .0438 99.9541 .0406 97.0042

25 .0497 99.9490 .0468 97.1677

30 .0344 99.9655 .0417 96.6803

35 .0653 99.9338 .0690 96.1376

40 .0125 99.9872 .0240 95.8200

45 .0109 99.9888 .0206 95.6108

50 .0106 99.9895 .0162 95.6320

60 .0118 99.9879 .0149 95.8032

70 .1074 99.8923 .0241 95.9536

80 .0283 99.9718 .0235 96.1427

'= : " - llII . .. i... . [ ...... H lIIR.. . ....... . .... ..__.. ...
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TABLE 6B

DISTINCT PERIODS AND PERCENTAGE OF REFLECTED AND
TRANSMITTED ENERGIES PASSING THROUGH THE
VERTICAL BOUNDARY (THE CASE WHERE THE

VERTICAL BOUNDARY IS AT THE
MIDDLE OF THE ZONE I)

Real Complex

Period Reflected Transmitted Reflected Transmitted
Sec Energy Energy Energy Energy

10 .1410 99.8621 .1414 91.7903

12 .0710 99.9305 .0583 93.9755

15 .0537 99.9441 .0373 96.2030

18 .9384 99.0587 .8457 96.3639

20 .1468 99.8515 .1430 98.0320

22 .5724 99.4253 .5377 97.9097

25 .2310 99.7686 .2317 98.3317

30 .1871 99.7836 .1913 98.1774

35 .2673 99.7323 .2732 97.8066

40 .3002 99.7002 .3195 97.5468

45 .2449 99.7547 .2573 97.4167

50 .2027 99.7973 .2126 97.4084

60 .1677 99.8321 .1750 97.6243

70 .4799 99.5201 .4220 97.1232

80 .6412 99.9581 .0414 97.5714
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TABLE 6C

DISTINCT PERIODS AND PERCENTAGE OF REFLECTED AND
TRANSMITTED ENERGIES PASSING THROUGH THE

VERTICAL BOUNDARY (THE CASE WHERE THE
POSITION OF THE VERTICAL BOUNDARY

GRADUALLY CHANGES)

Real Complex

Period Reflected Transmitted Reflected Transmitted
Sec Energy Energy Energy Energy

10 .0177 99.9815 .0383 87.122

12 .0119 99.9876 .0165 90.5295

15 .0092 99.9906 .0142 94.0460

18 .0207 99.9767 .0266 96.2619

20 .0073 99.9912 .0080 97.1105

22 .0134 99.9845 .0084 97.5348

25 .0271 99.9707 .0226 97.5493

30 .0278 99.9713 .0114 96.9659

35 .0577 99.9379 .0218 96.3299

40 .0266 99.9728 .0081 95.9103

45 .0140 99.9856 .0065 95.7905

50 .0111 99.9886 .0077 95.7517

60 .0113 99.9879 .0107 95.8399

70 .1399 99.9598 .0582.. 95.8825

80 .0209 99.9790 .0193 96.0392

______



75

TABLE 7

STARTING COMPLEX Vp AND V VELOCITIES OF THE
LAYERED SYSTEMS, THE IMAGINARY PART

BEING .1% OF THE REAL PART

Left Layers Riaht Layers

V Vs V Vs

IMAG REAL IMAG IMAG REAL IMAGREAL (x10D2 ) (x10. 2 ) REAL (x I T 2 ) (x10- 2 )

6.000 0.600 3.540 0.354 5.800 0.580 3.470 0.347

6.000 0.600 3.560 0.356 6.700 0.670 3.740 0.374

6.700 0.670 3.600 0.360 6.700 0.670 3.740 0.374

6.695 0.670 3.595 0.360 6.700 0.670 3.740 0.374

6.650 0.665 3.550 0.355 6.700 0.670 3.740 0.374

7.900 0.790 4.430 0.443 7.000 0.700 3.820 0.382

7.900 0.790 4.425 0.443 8.050 0.805 4.620 0.462

7.899 0.790 4.420 0.442 8.050 0.805 4.620 0.462

7.880 0.788 4.390 0.439 8.050 0.805 4.620 0.462

7.860 0.786 4.355 0.435 8.100 0.810 4.540 0.454

7.820 0.782 4.320 0.432 8.400 0.840 4.660 0.466

7.678 0.768 4.182 0.418 8.500 0.850 4.500 0.450

7.730 0.773 4.220 0.422 8.500 0.850 4.500 0.450

7.800 0.780 4.278 0.428 8.500 0.850 4.500 0.450

7.890 0.789 4.430 0.443 8.500 0.850 4.500 0.450
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TABLE 8

THE CONSTANT Q, AND CORRESPONDING Q., AND THE
CORRESPONDING IMAGINARY PARTS OFVp AND Vs

OF THE LAYERED REGIONS

Left Layers (Q8 = 400) RiQht Layers (N = 800)
IMAr, (V,) IMA (V ) IMAG (V IMAG (V

(xl0 - () (x (xl0-

881 0.34 0.40 1676 0.15 0.19

875 0.34 0.40 1925 0.15 0.23

1039 0.32 0.40 1925 0.15 0.23

1040 0.32 0.40 1925 0.15 0.23

1050 0.40 0.40 1925 0.17 0.24

954 0.40 0.40 2014 0.22 0.29

960 0.40 0.40 1820 0.22 0.29

955 0.40 0.40 1820 0.22 0.29

916 0.40 0.40 1820 0.22 0.28

977 0.40 0.40 1909 0.21 0.29

980 0.40 0.40 1950 0.21 0.28

1011 0.40 0.40 2140 0.21 0.28

1006 0.40 0.40 2140 0.21 0.28

997 0.40 0.40 2140 0.21 0.28

951 0.40 0.40 2140 0.21 0.28

i
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TABLE 9

THE QB MODEL OF LEE AND SOLOMON AND CORRESPONDING Qa,
AND CORRESPONDING IMAGINARY PARTS OF V. AND Vs

OF THE LAYERED REGIONS

Left Layers Riaht Layers

00IMAG (¥) IMAG 0( 0s)Q IMAG ( 3) IMAG (s

31 62 (xl 0- (xl00 (xI -0(x5 1 -

312 672 0.40 6.00 1000 2095 0.14 0.17

312 664 0.40 6.00 1000 2400 0.14 0.18

312 810 0.40 6.00 1000 2400 0.14 0.18

770 2000 0.20 0.23 1000 2400 0.14 0.18

770 2026 0.20 0.23 1000 2400 C.14 0.18

770 1836 0.20 0.23 1000 2518 0.14 0.19

770 1836 0.24 0.28 1000 2277 0.17 0.23

770 1836 0.24 0.28 1000 2277 0.17 0.23

770 1825 0.24 0.28 1000 2277 0.17 0.25

17 40 9.00 13.00 1000 2436 0.17 0.23

17 40 9.00 13.00 1000 2675 0.16 0.23

17 42 9.00 12.00 1000 2675 0.16 0.23

17 43 9.00 12.00 1000 2675 0.16 0.23

17 43 9.00 13.00 44 117 3.60 5.00

34 80 5.00 7.00 44 117 3.60 5.00

. .... 1 1
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TABLE 10

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES.
AND CORRESPONDING PHASE VELOCITIES AND ATTENUATIONS
OF THE LEFT LAYERS (THE CASE WHERE THE IMAGINARY

PART OF THE INPUT VELOCITY IS .1%
OF ITS REAL PART)

Wavenumber (KM- 1 ) Phase Velocity (KM/SEC) Attenua1on

Funda- Ist 2nd Funda- 1st 2nd Funda-
mental Hiqher Hiqher nental Hiqher Hiaher mental
Mode Mode Mode Mode Mode Mode Mode

0.2009 0.1618 0.1589 3.475 4.315 4.394 0.199

0.1806 0.1453 0.1421 3.478 4.323 4.423 0.202

0.1497 0.1207 0.1207 3.497 4.337 4.481 0.208

0.1180 0.0960 -- 3.551 4.363 -- 0.218

0.0962 .... 3.627 .... 0.226

0.0853 .... 3.681 .... 0.228

0.0765 .... 3.732 .... 0.227

0.0662 .... 3.796 .... 0.224

0.0542 .... 3.866 .... 0.215

0.0460 .... 3.902 .... 0.209

O.0400 .... 3.924 .... 0.207

0.0155 .... 3.940 .... 0.206

0.0318 .... 3.955 .... 0.208

0.0262 .... 3.997 .... 0.216

0.0221 .... 4.066 .... 0.230
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TABLE 11

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES,
AND CORRESPONDING PHASE VELOCITIES AND ATTENUATIONS
OF THE RIGHT LAYERS (THE CASE WHERE THE IMAGINARY

PART OF THE INPUT VELOCITY IS .1%
OF ITS REAL PART)

Wavenumber (KI-l) Phase Velocity Attenuaon(xl0-)

Funda- 1st 2nd Funda- 1st 2nd Funda-
mental Hioher Hioher mental Hiqher Hiaher mental
Mode Mode Mode Mode Mode Mode Mode

0.2002 0.1544 0.1532 3.487 4.522 4.553 0.202

0.1799 0.1385 0.1369 3.493 4.537 4.590 0.204

0.1490 0.1150 -- 3.514 4.552 -- 0.209

0.1174 0.0915 -- 3.569 4.578 -- 0.218

0.0958 0.0757 -- 3.644 4.613 -- 0.226

0.0849 ... 3.700 .... 0.229

0.0761 .... 3.755 .... 0.230

0.0656 .... 3.830 .... 0.229

0.0533 .... 3.928 .... 0.224

0.0449 .... 3.996 .... 0.219

0.0388 .... 4.045 .... 0.216

0.0342 .... 4.084 .... 0.215

0.0305 .... 4.120 .... 0.217

0.0249 .... 4.198 .... 0.225

0.0208 .... 4.308 .... 0.243
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TABLE 12

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES,
AND CORRESPONDING PHASE VELOCITIES AND

ATTENUATIONS OF THE LEFT LAYERS
(THE CASE WHERE OS IS CONSTANT)

AttenuationWavenumber ( -l) Phase Velocity (xl 0- 2 )

Funda- lst 2nd Funda- 1st 2nd Funda-
mental Higher Higher mental Hiqher Higher mental
Mode Mode Mode Mode Mode Mode Mode

0.2009 0.1618 0.1589 3.475 4.316 4.394 0.2053

0.1806 0.1453 0.1420 3.478 4.323 4.423 0.2053

0.1497 0.1207 -- 3.497 4.337 -- 0.2065

0.1179 0.0960 -- 3.551 4.363 -- 0.2092

0.0962 .... 3.627 .... 0.2092

0.0853 .... 3.681 .... 0.2068

0.0765 .... 3.732 .... 0.2026

0.0662 .... 3.797 .... 0.1951

0.0542 .... 3.866 .... 0.1848

0.0460 .... 3.903 .... 0.1794

0.0400 .... 3.924 .... 0.1772

0.0354 .... 3.939 .... 0.1768

0.0318 .... 3.955 .... 0.1781

0.0262 .... 3.997 .... 0.1836

0.0221 .... 4.067 .... 0.1940
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TABLE 13

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES,
AND CORRESPONDING PHASE VELOCITIES AND

ATTENUATIONS OF THE RIGHT LAYERS
(THE CASE WHERE Q8 IS CONSTANT)

AttenuationWavenumber (KM"1 ) Phase Velocity (x1 0- 2 )

Funda- 1st 2nd Funda- 1st 2nd Funda-
mental Hicher Hiaher mental Hiaher Hiqher mental
Mode Mode Mode Mode Mode Mode Mode

0.2002 0.1544 0.1533 3.487 4.522 4.553 0.1071

0.1799 0.1385 0.1369 3.493 4.537 4.590 0.1081

0.1490 0.1150 -- 3.514 4.552 -- 0.1108

0.1174 0.0915 -- 3.569 4.578 -- 0.1160

0.0958 0.0757 -- 3.645 4.614 -- 0.1205

0.0849 .... 3.700 .... 0.1221

0.0761 .... 3.755 .... 0.1226

0.0656 .... 3.830 .... 0.1216

0.0533 .... 3.928 .... 0.1185

0.0449 .... 3.996 .... 0.1159

0.0388 .... 4.045 .... 0.1146

0.0342 .... 4.084 .... 0.1142

0.0305 .... 4.120 .... 0.1148

0.0249 .... 4.198 .... 0.1187

0.0208 .... 4.308 .... 0.1270



82

TABLE 14

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES,
AND CORRESPONDING PHASE VELOCITIES AND ATTENUATIONS

OF THE LEFT LAYERS (THE CASE OF
LEE AND SOLOMON'S MODEL)

1 Attenuation
Wavenumber (KM ) Phase Velocity (x10-2 )

Funda- 1st 2nd Funda- 1st 2nd Funda-
mental Hiqher Higher mental Higher Higher mental

Mode Mode Mode Mode Mode Mode Mode
0.2008 0.1613 0.1591 3.476 4.329 4.389 2.1463

0.1806 0.1449 0.1421 3.479 4.335 4.419 2.0031

0.1497 0.1205 -- 3.498 4.345 -- 1.7263

0.1179 0.0959 -- 3.552 4.368 -- 1.3356

0.0962 .... 3.628 .... 1.0034

0.0853 .... 3.682 .... 0.8519

0.0765 .... 3.733 .... 0.7852

0.0662 .... 3.797 .... 0.8549

0.0541 .... 3.867 .... 1.2567

0.0460 .... 3.903 .... 1.7255

0.0400 .... 3.925 .... 2.1302

0.0354 .... 3.941 .... 2.4612

0.0318 .... 3.956 .... 2.7363

0.0262 .... 3.999 .... 3.1892

0.0221 -- - 4.068 .... 3.6047
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TABLE 15

FUNDAMENTAL, AND FIRST AND SECOND HIGHER MODE EIGENVALUES
AND CORRESPONDING PHASE VELOCITIES AND ATTENUATIONS

OF THE RIGHT LAYERS (THE CASE OF
LEE AND SOLOMON'S MODEL)

Wavenumber (KM1  Phase Attenuation
Phaene Velocity (xi0-2 )

Funda- 1st 2nd Funda- Ist 2nd Funda-
mental Hiqher Hiaher mental Higher Higher mental
Mode Mode Mode Mode Mode Mode Mode

0.2002 0.1543 0.1534 3.487 4.524 4.552 0.0890

0.1799 0.1383 0.1370 3.493 4.541 4.586 0.0891

0.1490 0.1149 -- 3.514 4.554 -- 0.0901

0.1173 0.0915 -- 3.569 4.579 0.0928

0.0958 0.0756 -- 3.645 4.615 0.0958

0.0849 .... 3.700 .... 0.0973

0.0761 .... 3.755 .... 0.0986

0.0656 .... 3.830 .... 0.1012

0.0533 ..... 3.928 .... 0.1176

0.0449 .... 3.997 .... 0.1623

0.0388 .... 4.045 .... 0.2346

0.0342 .... 4.084 .... 0.3248

0.0305 .... 4.120 .... 0.4256

0.0249 .... 4.198 .... 0.6517

0.0208 .... 4.308 .... 0.9238
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TABLE 16

THE SIERRA NEVADA MODEL OF LYSMER AND DRAKE
AND CALCULATED PHASE VELOCITIES USING

LAYERED SYSTEMS

Compressional Shear
Thickness Velocity Velocity Density Period Phase Velocity

Lysmer & This
Drake Study

6.0 5.60 3.10 2.67 6 3.065 3.064

4.5 6.00 3.40 2.70 7 3.105 3.104

5.0 6.10 3.40 2.80 8 3.148 3.147

15.0 6.90 3.90 2.80 9 3.191 3.191

20.0 7.90 4.39 3.30 10 3.236 3.237

1.
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TABLE 17

LEE AND SOLOMON'S PHASE VELOCITY

Eastern United States Western United States

Period Funda- 1st 2nd Funda- 1st 2nd
mental Higher Higher mental Higher Higher
Mode Mode Mode Mode Mode Mode

10 3.532 4.468 4.521 3.379 4.454 4.657

12 3.559 4.474 4.543 3.420 4.511 4.758

15 3.620 4.483 4.577 3.489 4.578 4.980

18 3.697 4.494 4.618 3.562 4.658 5.150

20 3.752 4.502 4.652 3.611 4.723 5.232

22 3.805 4.512 4.691 3.657 4.799 --

25 3.874 4.528 4.763 3.720 4.918 --

30 3.958 4.566 4.926 3.802 5.090 --

35 4.006 4.616 -- 3.860 5.209 --

45 4.047 .... 3.941 ....

50 4.054 .... 3.975 ....

60 4.061 .... 4.044 ....

70 4.064 .... 4.116 ....

80 4.070 .... 4.190 ....
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TABLE 18

LEE AND SOLOMON'S ATTENUATION (x 10-2)

Eastern United States Western United States

Period Funda- 1st 2nd Funda- Ist 2nd
mental Higher Higher mental Higher Higher
Mode Mode Mode Mode Mode Mode

10 .0903 2.1459 1.7652 .2516 .9800 4.6070

12 .0933 2.1146 1.6871 .2348 .1986 4.1221

15 .0958 2.0682 1.6130 .2125 2.9181 3.9127

18 .0977 2.0344 1.6255 .2017 3.4195 3.7966

20 .0982 2.0239 1.6693 .2122 3.6140 3.6374

22 .0981 2.0230 1.7286 .2482 3.7146 --

25 .0983 2.0344 1.8300 .3657 3.7300 -*

30 .1089 2.0665 2.0030 .7190 3.6524 --

35 .1446 2.0970 -- 1.1676 3.6649 --

45 .2848 2.1568 -- 2.0141 ....

50 .3737 2.2036 -- 2.3602 ....

60 .5602 2.3752 -- 2.8826 ....

70 .7409 .... 3.1902 .....

80 .9083 .... 3.3239 ....
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APPENDIX B

Figure 1. HYSTERETIC EFFECT OF THE VISCOELASTIC SOLID
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MAXWELL ELEMENT VOIGT ELEMENT

STANDARD LINEAR SOLID

Figure 2. ELEMENTAL MODEL OF VISCOELASTIC SOLID
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a( t) €( t)

SIN-t t

(a) RELAXATION FUNCTION (b) CREEP FUNCTION

o(t) £ (t)

(c) RELAXATION FUNCTION -(d) CREEP FUNCTION

FIGURE 3. (a) and (b) SOLUTIONS OF MAXWELL AND VOIGT ELEMENTS,

(c) and (d) SOLUTIONS OF STANDARD LINEAR SOLID

_____-___



9O

L I R

Figure 4. A FINITE ELEMENT NET, BOUNDED BY TWO SEMI-INFINITE
HORIZONTALLY LAYERED SYSTEM

z

tT_ h/2

z

x

Figure 5. COORDINATES OF AN ELEMENT, n AND C ARE THE LOCAL
COORDINATES OF THE ELEMENT

I
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* A2

A A

* 0 0 W A N- I

ADD ELEMENT WHERE
SUBMATRICES OVERLAP ONLY 0

le 0 a

Figure 6. STRUCTURE OF MATRICES A, C, G, AND M
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FIGURE 7. FUNDAMENTAL AND FIRST AND SECOND HIGHER MODE RAYLEIGH

WAVE PHASE VELOCITIES, BASIN AND RANGE PROVINCES
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Figure 8. FUNDAMENTAL AND FIRST AND SECOND HIGHER MODE RAYLEIGH

WAVE PHASE VELOCITIES, CANADIAN SHIELD
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Figure 9. FUNDAMENTAL RAYLEIGH WAVE PHASE VELOCITIES OF ZONE I

(THE CASE WHERE ALL THREE ZONES ARE ASSUMED TO BE THE
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Figure 9C. FUNDAMENTAL RAYLEIGH WAVE PHASE VELOCITIES OF ZONE I

(THE CASE WHERE THE VERTICAL BOUNDARY IS AT THE MIDDLE

OF ZONE I).
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Figure 10. RAYLEIGH WAVE ATTENUATION, BASIN AND RANGE PROVINCES.

(The case where the imaginary part of the input velocity
is .1% of its real part)
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Figure 11. RAYLEIGH WAVE ATTENUATION, CANADIAN SHIELD.

(The case where the real part of the input
velocity is .1% of its real part)
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Figure 12. RAYLEIGH WAVE ATTENUATION, BASIN AND RANGE PROVINCES

(The case where Q 8is constant)
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Figure 13. RAYLEIGH WAVE ATTENUATION, CANADIAN SHIELD

(The case where 0 B is constant)
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Figure 14. RAYLEIGH WAVE ATTENUATION, BASIN AND RANGE PROVINCES

(The case of Lee and Solomon's data)
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APPENDIX C

PROGRAM RALEE

This program is a revised form of the Program Raleem, written by

L. A. Drake in 1972. The program is designed to analyze the motion of

harmonic surface waves in a linearly elastic or viscoelastic layered

medium. The layered medium is subdivided into a finite element

Region I and one or two semiinfinite regions L and R. The two or three

regions are joined together at the finite element boundaries.

The program consists of the main program RALEE, and 11 subroutines:

EIGVEC, BOUNDA, SECEVA, SOLVE, ORTHOG, SETUP, INVERTC, MODAL, STIFFER,

WRDSC AND BANSOL.

The function of the main and subroutines are as follows.

RALEE: Reads in the input data, assembles the stiffness matrices

of the finite element regions and calculates amplitude and energies at

the vertical boundaries.

EIGVEC: Computes the entries of the mass and elastic or

viscoelastic matrices of the layered systems.

BOUNDA: Computes boundary matrices.

SECEVA: Constructs the eigenvalue problem, and solves It.

SOLVE: Solves an eigenvector corresponding to 0e eigenvalue,

found in SECEVA.

ORTHOG: Finds an eigenvector normal to the one that has already

been found.

SETUP: Decomposes the matrix V, used in the boundary matrix of

the subroutine, BOUNDA, into a vector; rewrites this vector into its

real and imaginary parts.

110
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INVERTC: Inverts a matrix.

MODAL: This subroutine is used only in the elastic case and

selects the compatible eigenvalues.

STIFFER: Computes the stiffness matrix of an element.

WRDSC: Writes vector B and the matrix A of equation AX =

on Tape 2.

BANSOL: Solves equation AX = B.

INPUT DATA

Read In:

I. Layered System

A. Period (FlO.5) (one card).

B. Number of column and width of the finite element region

(10, 7F10.5) (one card).

C. Number of elements having the same depth, young modulus,

rigidity and width (6 110) (one card).

D. Number of natural layers and depth of the top of the first

layer (110, 7FI0.5) (one card).

E. Number,thickness, compressional and shear velocities and

density of the sublayers (110, 7FI0.5) (N cards, N < 15).

Step D and E may be repeated once if there are two layered

systems.

II. Finite Element Region

A. Depth to corner of the element and the number of elements

having the same depth (4(FI0.5, 110)) (Number of cards needed

varies in this and the next two cases. For example, there

____
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are four values of depth on each card and each value multiplies

by the number of the element having the same depth. Addition

of these values plus the values of the following cards must

add up to be the number of elements, N2).

B. Moduli of the elements and the number of elements having the

same moduli (2(2 F1O.5, 110)).

C. Width of the elements and the number of elements having the

same width (4(FIO.5, I10)).

A typical Read In data, described above, is given at the end of

the program RALEE.
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